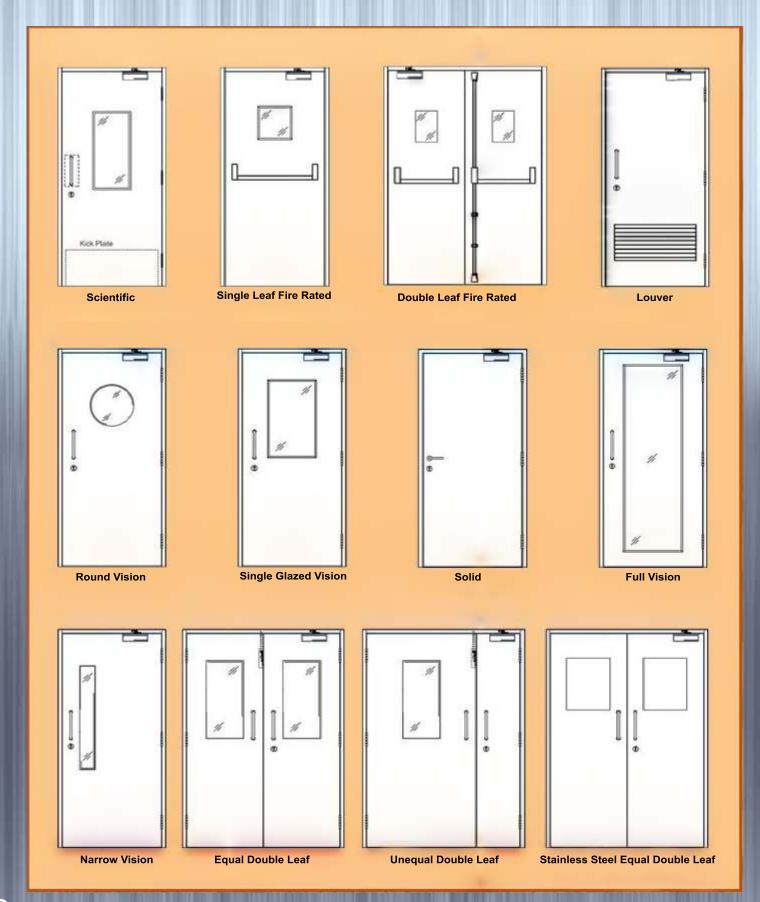
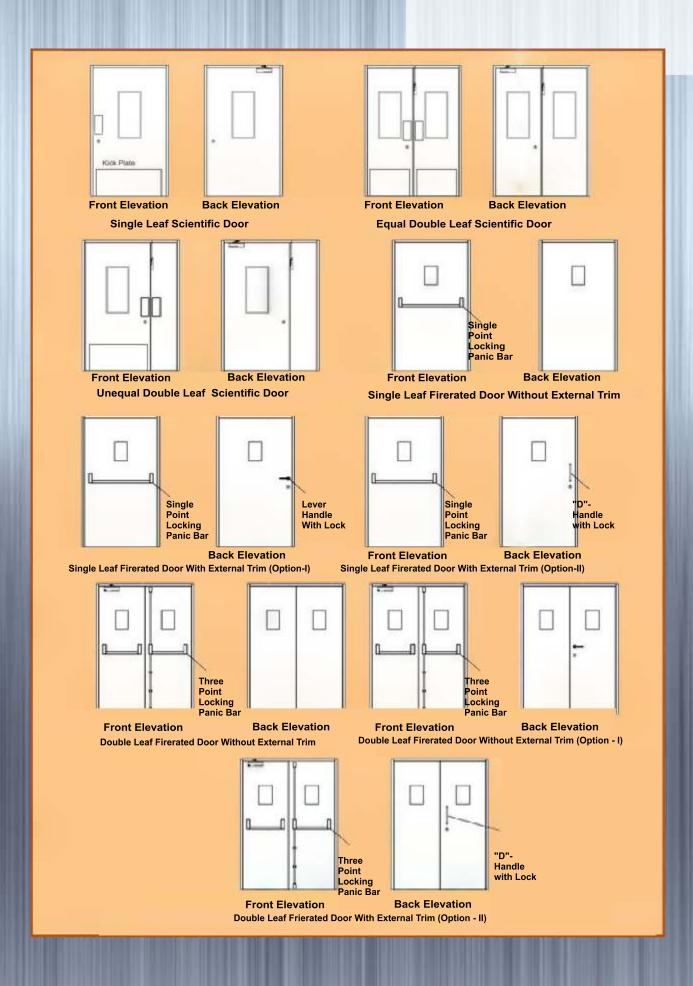
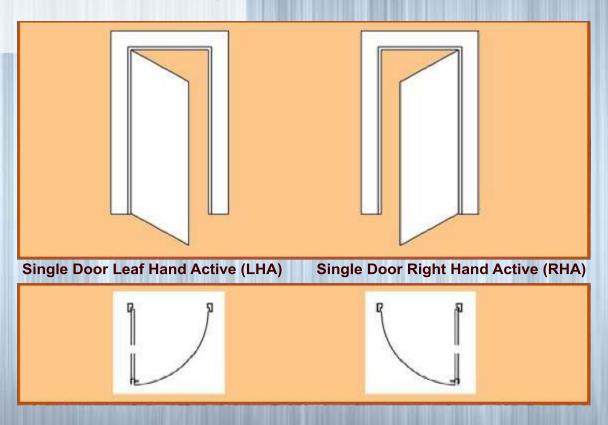


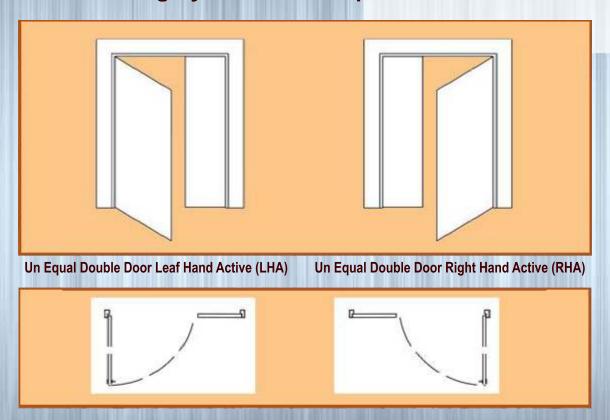
GG Fabricators



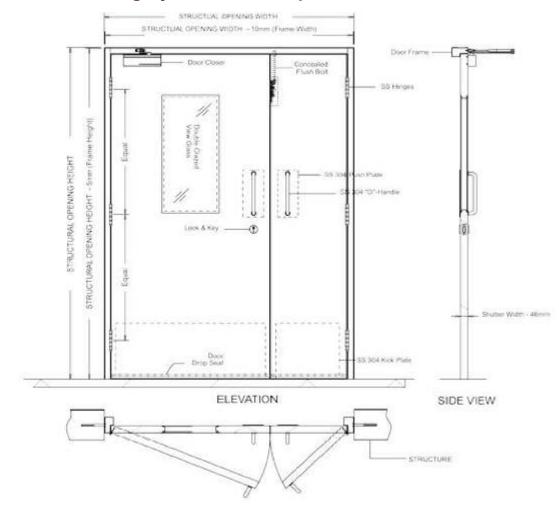

Fire Doors Manufacturers
Fabricators for Better Tommarow

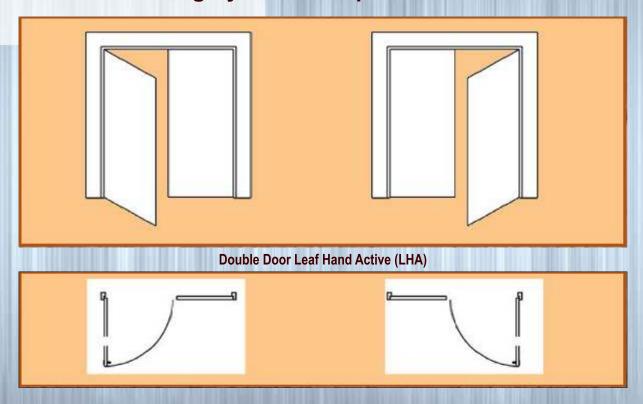


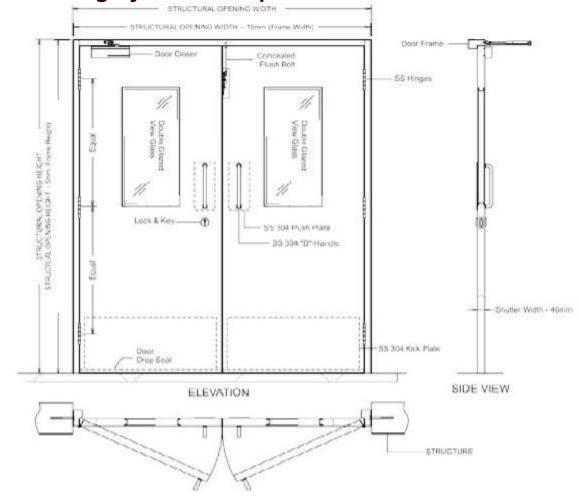
Door Designs

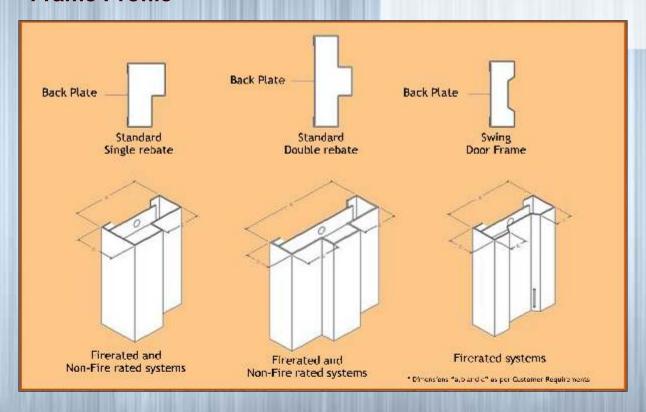


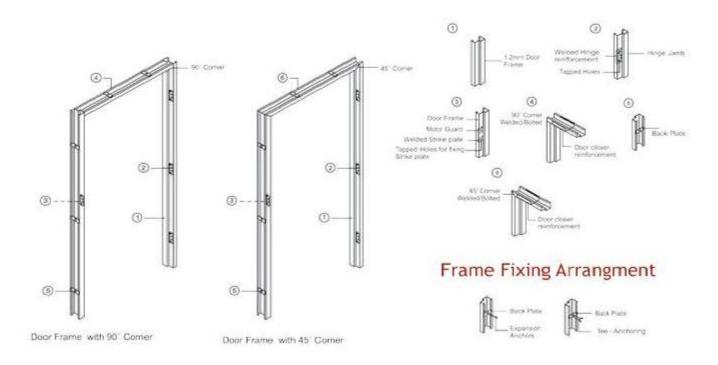
Door Handing System for Single Leaf Door




Door Handing System for Un Equal Double Leaf Door


Door Measuring System for Un Equal Double Leaf Door


Door Handing System for Equal Double Leaf Door


Door Measuring System for Equal Double Leaf Door

Frame Profile

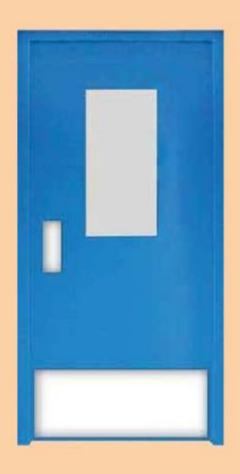
Door Frame construction

Types of Doors

General Doors

Steel door sets offer distinct advantage over other door systems. They offer higher protection against vandalism, fire, burglary and are relatively maintenance-free. They are more robust than timber/pvc/aluminium and are preferred by many Residential / commercial enterprises for various design options while meeting safety and security parameters. Our general doors have, over the years proved to be maintenance-friendly, long lasting and eco - friendly.

Fire Rated Door


The application and use of Fire Rated Doors is of critical importance in buildings and areas needing to compartmentalize and contain the spread of fire. Steel fire rated doors are used to protect life and property in the event of fire related emergencies compartmentalising fires. For this, the door must serve as a fire and smoke barrier. Studies have shown that more people have lost lives due to smoke asphyxiation than fire. While the cause of fire could be arson, short circuit, gas leakage or sheer negligence, the range of passive fire doors are designed to restrict their spread and save lives.

Scientific Doors

These doors can withstand exposure to chemical washing and are designed to meet the most stringent requirements for clean and hygienic applications including USFDA/WHO/CGMP approvals.

Scientific doors facilitate highest standards of hygiene for clean room environment in industries like pharmaceuticals, Bio-technologies, food, Micro Electronics Industries and hospitals. These fully flush type doors available in galvanized steel and stainless steel are provided with a range of indigenous and imported ironmongery in stainless steel.

These door sets can be custom designed for individual project requirements while incorporating special features in addition to the vision panels, ironmongery and wide range of colour finish.

Stainless Steel Doors

Stainless Steel Doors are designed to meet harsh environmental exposure to chemicals, water, steam, laboratories, bottling plants, food processing plants, hospital surgery rooms and all humid environments.

Stainless steel doors and frames are available in standard and custom designs for non-residential construction. They are ideal when design and desired appearance require an extra touch of class.

Stainless steel doors are offered in a complete range of sizes. Special sizes can be made on request

Single Skin Duct Doors

FHC Single Skin Shaft Door

Single Skin Duck Doors

Mortise Locks and Accessories

Mortise Dead Lock

Mortise Dead Lock with Latch

Lever Handle with Lock

Cylinder Lock

Knob type Lock with Key

Cylinder Lock

Concealed Flush Bolt

Safety Chain

Eye View

Door Closer

Door Closer (Concealed)

Panic Bar (Double Door)

Panic Bar (Handle Type)

Panic Bar (3 Point Locking)

Panic Bar (Box Type)

Panic Bar

Panic Bar (Single Point Locking)

Infill

Honeycomb Kraft paper

Honeycomb Kraft paper with its unique properties enhances the structural integrity of the doors with minimal additional weight to the door. The final finish on the door is predominantly dependent on the quality of the honeycomb Kraft paper and the glue which is used to get the flat surface. This infill material invariably has high crushing strength leading to impact resistance. The quality and consistent flat surface achieved because of the infill material is exceptional to the material and design of the doors.

Paper Honeycomb is an evolutionary product that replaces non eco-friendly materials like (wood, PUF, Rock Wool, Mineral wool, EPS) in their respective applications while preserving the key virtues of their usage in the concerned applications. On its own Paper Honeycomb is an eco-friendly, Versatile, flexible and lightweight material that has excellent compatibility with other materials and an excellent strength-to-weight ratio. It combines with plywood, steel, plastics, FRP and many other materials as its sandwich faces to form some of the strongest composite panels for its weight and dimensions. It is also more economical than most materials, thereby making it an ideal choice. As a product made from recycled paper and eco-friendly glue, it is a boon to the earth as a 100% bio-degradable, non-polluting, eco-friendly material. Large scale usage of paper honeycomb can drastically boost a country's aim of preserving the nature.

Other Infill Material

Rockwool

Polyurethane Foam

Adhesive

Glue

Adhesive bonding is used to fasten two surfaces together, usually producing a smooth bond. This joining technique involves glues, epoxies, or various plastic agents that bond by evaporation of a solvent or by curing a bonding agent with heat, pressure, or time.

An adhesive, or glue, is a mixture in a liquid or semi-liquid state that adheres or bonds items together. Adhesives may come from either natural or synthetic sources. The types of materials that can be bonded are vast but they are especially useful for bonding thin materials. Adhesives cure (harden) by either evaporating a solvent or by chemical reactions that occur between two or more constituents.

Adhesives are advantageous for joining thin or dissimilar materials, minimizing weight, and when a vibration dampening joint is needed.

Powder Coatings

Powder coating is entirely a dry finishing process. It is composed of grinded particles of resins, pigments and other raw materials that are electrostatically charged and sprayed onto objects to be coated.

The objects to be coated are electrically grounded, so that the charged particles adhere to them until melted and fused together into a smooth coating in a curing oven, resulting in a uniform and durable high-quality finish.

Powder coating is a type of coating that is applied as a free-flowing, dry powder. The main difference between a conventional liquid paint and a powder coating is that the powder coating does not require a solvent to keep the binder and filler parts in a liquid suspension form. The coating is typically applied electrostatically and is then cured under heat to allow it to flow and form a "skin". The powder may be a thermoplastic or a thermoset polymer. It is usually used to create a hard finish that is tougher than conventional paint.

There are several advantages of powder coating over conventional liquid coatings

Standard Finishes

ı	ELECTION DE L'ESTATION	NO LANGO TRUMBO VARIA DE ESTADA POR ALIMANDA DE ELEMANA DE DAMANDO PARE ENCL			Н		М	M	J.	13	Ы		Ay,
l	RAL Code	Colour							h			1	
	RAL 3011	Brown Red			1								-
	RAL 3020	Traffic Red						1			1		
	RAL 5010	Gentian Blue	A1 60-00-00				1	1	1		1		
	RAL 5015	Sky Blue		1			1	100					
	RAL 5023	Distant Blue											1
	RAL 7023	Concrete Grey				1	1						
	RAL 9001	Cream											
	RAL 9010	Pure White										-	

Polyurethane coatings Finish

Polyurethanes are often used as a primer to enhance final coating adhesion and finish. Polyurethane coatings usually bring colour retention, better surface finish (high gloss), increased scratch and abrasion resistance as well as moisture resistance. PU coatings are the highest moisture and water resistant coating, but also the only systems sustaining extreme temperature variations. A strong driver of the increasing use of polyurethanes in the coating industry is its high compatibility with environmentally friendly formulations, including low to zero VOC emissions, but also its potential use of renewable resources like bio-based polyols.

Polyurethane Chemical Resistance at Room Temperature

Acetic Acid, 30%	Ethylene Glycol	Potassium Acetated (aq)
Acetone	Ethylene Oxide	Potassium Chloride(aq)
Acetylene	Ethylene Tri chloride	Potassium Cyanide(aq)
Alkaline	Ferric Chloride (aq)	Potassium Hydroxide (aq)
Aluminium chloride (aq)	Ferric Nitrate(aq)	Producer Gas
Aluminium Nitrate(aq)	Ferric Sulphate(aq)	Propane
Ammonia Anhydrous	Fluorine(Liquid)	Propyl Alcohol
Ammonia Gas (cold)	Formaldehyde (RT)	Propylene
Ammonia Gas (hot)	Formic Acid	Propylene Oxide
Ammonium Chloride(aq)	Freon 11	Pydraul, 10E, 29 ELT
Ammonium Sulphate(aq)	Freon 12	Pydraul 30E, 50E, 65E
Amyl Alcohol	Freon 22	Pydraul 115E
Amyl	Fuel Oil	Pydraul 230E,312C,540C
Naphthalene		
Animal Fats	Future Glucose	Rapeseed Oil
Aqua Regia	Glue	Red Oil(MIL-H-5606)
Arsenic Acid	Glycerine	RJ-1 (MIL-F- 23338 B)
Asphalt	Glycols	RP 1(MIL-F-25576 C)
ASTM Fuel A	Green Sulphate Liquor	
ASTM Fuel B	Hexane	Salt Water
ASTM Fuel C	Hydraulic Oil	Sewage
Barium Chloride (aq)	Hydrochloric cid(cold)37%	Silicate Esters
Beer	Hydrochloric Acid(hot)37%	Silicone Oils
Beet Sugar Liquors	Hydrofluoric Acid (Conc.)	Silver Nitrate
Benzene	Hydrofluoric Acid (Conc.) hot	- Skydrol 500
Benzine	Hydrogen Gas	Skydrol 700
Blast Furnace Gas	Isobutyl Alcohol	Soap Solutions
Bleach Solutions	Isooctane	Sodium Chloride(aq)
Borax	Isopropyl Acetate	Sodium Hydroxide (aq)
Boric Acid	Isopropyl Alcohol	Sodium Peroxide (aq)
Brake Fluid	Isopropyl Ether	Sodium Phosphatr(aq)
Brine	Kerosene	Sodium Sulphate (aq)
Bromine Water	Lacquers	Soya Bean Oil
Bunker Oil	Lacquer Solvents	Steam Under 300F
Butane	Lard	Steam Over 300F
Butter	Lavender Oil	Stoddard Solvent

Butyl Alcohol		Lead Acetate (aq)		Styrene
Butylene		Linseed Oil		Sucrose Solution
Calcium Chloride(aq)		Liquefied Petroleum Gas	2	Sulphuric Acid(Dilute)
Calcium Hydroxide (aq)		Lubricating Oils		Sulphuric Acid(Conc.)
Calcium Nitrate (aq)		Lye		Sulphuric Acid (20% Oleum)
Calcium Sulphide (aq)		Magnesium Chloride(aq)		Sulphurous Acid
			- 1	Tannic Acid
Cone Sugar Liquors		Magnesium Hydroxide(aq)		
Carbolic Acid		Mercury		Tetrachloroethylene
Carbon Dioxide		Methane		Toluene
Carbolic Acid		Methyl Acetate		Transformer Oil
Carbon Monoxide		Methyl Acrylate		Transmission Fluid Type A
Carbon Tetrachloride		Methyl Alcohol		Trichloroethane
			- 1	Trichloroethylene
Castor Oil		Methyl Butyl ketone		
Chlorine(dry)		Methyl Chloride		Turbine Oil
Chlorine(wet)		Methylene chloride	,	Turpentine
Chloroform		Methyl Ethyl ketone		Varnish
Chlorox		Methyl isobutyl ketone		Vinegar
Chromic Acid		Milk		Vinyl Chloride Water
Citric Acid		Mineral Oil		67
Coal Tar		Naphtha		Whiskey, Wines
Coconut OIL		Naphthalene		White Oil
Cod Liver Oil		Natural Gas		Wood Oil
Coke Oven Gas		Neatsfoot Oil		Xylene
Copper Chloride(aq)		Nitric Acid(Conc.)		Zinc Acetate(aq)
				Zinc Chloride (aq)
Copper Cyanide (aq)		Nitric Acid(Dilute)	T)	
Com Oil		Nitro ethane	-)	
Cotton Seed Oil		Nitrogen		
Creosol		N-Octane	·)	
Cyclohexane		Oleic Acid		
Denatured Alcohol		Oleum Spirits		
Detergent Solution		Olive Oil		
Diesel Oil		Oxygen - Cold	- J	
Dioxane		Oxygen (200-400F)		
Dowtherm Oil		Paint Thinner, Deco		
Dry Cleaning Fluids		Perchloric Acid		
Ethane		Perchloroethylene		
Ethyl Acrylate		Petroleum - Below 250F	- 6	
Ethyl Alcohol		Petroleum-Above 250F		
Ethyl Benzene		Phenol		
Ethyl Cellulose		Phenyl Ethyl Ether		
Ethyl Chloride		Phosphoric Acid -45%	ij	
Ethyl Ether		Pickling Solution		

Eco-Friendly 19

Our Valued Customers

NOVOZYMES

MARKET CITY

- LIDO ISTA
- AL-FARAD
- ❖ NCL INFRASTRUCTURE
- HLL LIFE CARE
- SRI GANESHA SECCO
- **BIOPLUS**
- **FUTURE TECH SOLUTIONS**
- **GELTEC**
- *** MEYER ORGANICS**
- **APOTEX**
- **❖ NCL INFRA STRUCTURE**
- *** BIOPHARMA GROUP**
- *** FUTURE TECH SOLUTION**

- NET MAGIC
- *** TULIPS**
- *** IBINI SPA RESORTS**
- *** APC SOLUTION**
- *** BAGMANE**
- SALARPURIA SATVA
- *** UJWAL BUILDERS**
- **❖** N S STEEL FURNITURE
- ANGLO-FRENCH DRUGS& PHARMA CEUTICAS
- *** ASTRAL WINDOWS**
- **MAIYAS FOODS PVT. LTD.**

GG Fabricators

Office Address:

No. 115, Behind Panchayath Office, Chikkabanavara, Bangalore - 560 090.

Factory Address:

No.2, 14th Cross, Andrahalli Main Road, Byraveshwara Nagar, Peenya 2nd Stage Hegganahalli, Banglore - 560 091.

Phones: 9972194555, 9741430083

E-mail: ggfabricator@gmail.com / imran.ggfab@gmail.com